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The introduction into the continuity equation of additional terms to 
recover grid-scale ellipticity, for the Navier-Stokes equations dis- 
cretised on a non-staggered mesh, results in an increase in the dis- 
cretisation error. The introduced error is a combination of the additional 
truncation error and a false source resulting from the inconsistent 
construction of the conservation equations used in the finite volume 
scheme considered. The false source error component is removed by 
constructing the conservation terms consistently, while the additional 
truncation error is shown to be of the same order as the leading order 
truncation error associated with the unmodified equations. A method of 
reducing the magnitude of the additional terms, thereby reducing the 
additional error, is considered. It is shown that although this does 
reduce the magnitude of the error it also reduces the ellipticity of the 
equations and leads to slower convergence. ~? 1994 Academic Press, Inc. 

1. INTRODUCTION 

When the Navie~Stokes equations are discretized on a 
non-staggered mesh, with all the unknowns stored at the 
same locations and second-order central differencing used 
for the pressure gradient and continuity terms, a grid scale 
oscillation is seen to develop in the pressure field. This 
behaviour is the result of the discrete system being non- 
elliptic at the grid scale wave number. Several methods have 
been suggested to recover the full ellipticity of the discrete 
system and prevent the occurrence of this oscillation [ 1-5 ]. 
In Armfield [ 1 ] a finite volume method was presented that 
was specifically designed to have an identical discrete ellip- 
ticity to the finite volume SIMPLE scheme defined on a 
staggered mesh [6-9] ,  which in turn has an identical 
discrete ellipticity to the standard second-order central 
differencing for the Laplace operator. The Armfield scheme, 
which is briefly described in the next section, was obtained 
by adding additional terms into the continuity equation to 
recover the ellipticity, while retaining the iterative SIMPLE 
Poisson pressure correction equation approach. In practise 
this leads to a similar discretization to the Rhies and Chow 
scheme [5] ,  which uses interpolation of the momentum 

equations to mimic the SIMPLE scheme, but on a non- 
staggered mesh, with identical ellipticity. Such schemes were 
defined to be strongly elliptic, and it was suggested that 
strong ellipticity was a desirable feature of any scheme and 
this was one of the reasons for the popularity of the 
S IMPLE scheme. A discrete ellipticity measure E h, defined 
in Section 3, was proposed by Armfield such that the 
SIMPLE scheme had Eh = 1 and non-elliptic schemes had 
E h = 0. A strongly elliptic scheme was then defined to be one 
with Eh > 0.66. 

As noted above, in the Armfield scheme and in many 
other schemes [2, 3], the full ellipticity of the continuous 
equations is recovered by adding additional terms into the 
continuity equation. The terms introduced by Armfield, 
referred to as the elliptic correction terms in the remainder 
of this paper, are presented in the next section. Typically 
these terms are dependent on the grid size and as a result 
introduce an additional truncation error into the scheme. As 
this additional error may affect the overall accuracy, it has 
been suggested in the context of another method that their 
magnitude should be reduced by multiplying them by a 
factor of 0.1 [3]. If this approach is taken the degree of ellip- 
ticity of the discrete equations will be reduced, resulting in 
a weakly elliptic system. It was suggested by Armfield that 
weakly elliptic schemes may not be able to prevent the 
occurrence of the grid scale pressure oscillation; however, 
subsequent investigation has shown that only a small degree 
of ellipticity is required to prevent this phenomenon for the 
flows considered. In this paper the effect of including such a 
multiplying factor with the elliptic correction terms 
proposed by Armfield is considered. It is shown that, 
although strong ellipticity is not necessary to prevent the 
grid-scale pressure oscillation, the degree of ellipticity has 
an influence on the rate of convergence. Thus the use of a 
multiplying factor to reduce the magnitude of the elliptic 
correction terms, to in turn reduce the associated error, will 
also reduce the rate of convergence. 

A detailed analysis of the error associated with the inclu- 
sion of the elliptic correction terms has been carried out and 
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it is shown that this error is a combination of the additional 
truncation error in the continuity equation together with, in 
finite volume schemes using the conservation form of the 
governing equations, a false source arising from the dis- 
cretization of the advection terms. The additional trunca- 
tion error is of the same order as the truncation error of the 
unmodified continuity equation. The false source error, 
although also relatively small, may be removed entirely by 
using a consistent method for the construction of the con- 
servation form of the governing equations. It is shown that 
the inclusion of the full elliptic correction terms does not 
have a significant influence on the solution for the flow 
considered, and thus the convergence advantages of the 
strongly elliptic scheme may be retained. 

The remainder of the paper is as follows. In Section 2 the 
numerical method, including the form of the elliptic correc- 
tion terms, is briefly described. In Section 3 a definition of 
the discrete ellipticity measure E h is given, the method of 
varying the ellipticity of the scheme is described, an estimate 
is obtained for the order of the correction terms, and the 
consistent derivation of the conservation form of the gover- 
ning equations is presented. In Section 4 a comparison of 
the solutions obtained with varying ellipticities is presented, 
together with truncation error and convergence results. 
Section 5 contains the discussion and conclusions. 

where subscripts indicate partial differentiation, the 
Reynolds number Re = UL/v,  with O being a characteristic 
velocity and L a characteristic length. 

2.2. D&cretisation 

The equations are discretised on a rectangular mesh, with 
x e denoting the ith node in the x direction and y~ denoting 
the j t h  node in the y direction. Finite volumes are used to 
convert differential terms in the governing equations in the 
following way. All second derivatives are approximated by 
second-order central differences as 

U.,x(X,/) = k -ix ~ Ax' ] / \  - ' 

+ O ( 3 x  2) = S D U  ~, (4) 

where Ax e = x i -- x i i and S D  is a finite difference operator. 
Derivatives occurring in convective terms, which are 

written in conservation form, are approximated using a 
third-order Q U ICK  scheme [ 11 ], as 

( U U ) x  (x  i, y i )  = (Fe+ 1/2,j _ F i l/2, j) 2/ (Ax i+ 1 + 3 x  i) 

+ O(3x3), (5) 

2. M E T H O D  

For simplicity only the momentum and continuity equa- 
tions are presented in the description of the numerical 
method. Results in Section 4 are presented for natural con- 
vection flow and this requires the inclusion of a temperature 
equation. Its conclusion is accomplished in exactly the same 
manner as for any SIMPLE-type scheme and does not affect 
the pressure velocity coupling and the elliptic correction 
terms, which are the primary subject of this paper. For  the 
results presented in Secion 4 the Boussinesq assumption is 
made for buoyancy, allowing for the incompressible 
Navier-Stokes equations to be used. 

2.1. Governing Equations 

The Navier Stokes equations are expressed in non- 
dimensional form in cartesian coordinates ( x , y )  with 
corresponding velocity components (U, V) and P the 
pressure as follows, 

1 
u,+ uux+ vu>,= - P x + ~  (U~x+ u,~) 

1 
v,+ u v , +  vv,,= - p> ,+~( V ,~+  v,~) 

Ux+ Vv=O, 

(1) 

where 

Fi  + 1/2,j= [ Ui + t/2( Ui + 1/2 _ S D U i (  Ax i  + 1)z/8)]i ' 

F i l / 2 , J = [ U i - l / 2 ( U i  1 / 2 _ S D U i  l(Axi)2/8)]J,  

assuming that U e+ 1/2,j and U i 1/2,j are positive. Discrete 
forms for the pressure and divergence terms are given below. 

2.3. Time Integrat ion 

The above equations are integrated numerically in the 
following way. All variables are known at time step t". First 
an initial estimate for (U, V) "+1 is obtained, denoted as 
( U, V)  n + l,m with m = 0, from 

G I ( U " + I , m ) = G 2 ( U  ") 

__ ( p i + l  _ p c  1)j,n+ l /2,m/(Axi+ l _~_ Axe) ,  

G I ( V " + I ' m ) = G 2 ( V  ") 

_ (p i+  1 _ p i  1)e.,+ 1/z,m/(Ayi+ 1 + Ay i ) .  

G 1 = (L /2  + 1~At), G2  = ( - L / 2  + 1/At), and L is in discrete 
form a block quinta-diagonal matrix, with components 

(2) obtained from the discretisation described above, which 
may be inverted using any of the standard techniques. The 

(3) best available guess is used for P" + 1/2,0. Next a correction 
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for P is obtained by solving the following Poisson equation 
for Pc, the pressure correction, 

[ (.<._.c..)}J gi + 1/2 / / o.i-- 1/2 :" 
t Ax e+' ) -  ~ Ax' 

x 2/ (Ax e+ 1 + A x  i) 

- I - [gj+l l2(PcJ+'=fcj~-gj- l /2( Ay j+l ) Ay j iI~ 

x 2/(Ay j+l + Ay  j) 

= ( ~ i +  1/2 -- ~fi-- 1/2)j,n+ 1,m 2/(Axi+ 1 + A x  i) 

+ (~ - j+  1/2 ~ j - l / 2 ) i , n + l , m 2 / ( A y j + l + A y J ) ,  (6 )  

where g is the inverse of the diagonal of G 1. As can be seen 
this is a finite volume discretisation about  the point ( i , j )  
consisting of, in the x direction for example, the difference of 
the terms g(Pc)x and 0 at the points x = x i+ 1/2, x = x i ~/2, 
and similarly for the y terms. 

The P"+ 1/2,% Un+ 1.% and V "+ ~.m are then corrected as 

uLJ, n+ I, m+ l = uLj,  n+ I, m 

_ [g~(pd+ 1 _ pc  ~ 1)]j/(Axe+~ + Axg), 

vi, j,n+ l,m+ l = Vi, j,n+ l,m 

_ [gJ(Pcj+ 1 _ pc j l )]i /(AyJ+ 1 + AyO, 

and 

pi, j,n+ lJ2,m + 1 = RxPce, J + pi, j,n+ l/2,m, 

with R x  an under-relaxation factor for the pressure, which 
for the present simulation was set to 0.6. The iteration index 
is then set to rn = m -I- 1 and the process is repeated until a 
divergence-free velocity field that satisfies the momentum 
equations is obtained. 

The terms 0 and Q are interpolated velocities defines as 

Cfi+ l12,j = (Ui+ 1 21._ Ui)J/2 + Ri+ l12,j, 

~'j+ 112,i : ( V j+ 1 + VOi/2 + R j+ 1/2,e, 

with the R terms defined as 

l/2,j__ , (  p e + 2 _ p i  , )  

R `+ - I { g  i+ \ A x i + Z + A x , +  

pc+ 1 i 1 
k - g i ( ~ x # + - 7 - ~ y ; ) } / 2  

_gi+l l2(Pi+l--pi) ]  j 
t ~xi-'+; ")J' (7) 

p j + 2 p j  1) RJ+ l/2'i= I { g j+ m \zjy-77"~ + AyJ+ 

. / p j + l _ p j  1 \ ) /  

, j2  e 

_gJ+ \ ) j .  (8) 

The R terms as defined above are the elliptic correction 
terms that ensure that the discretisation is strongly elliptic 
with ellipticity measure, as defined below, of Eh = 1. As a 
result of the inclusion of these terms the pressure velocity 
coupling is identical to that of a compact second-order 
differencing of the Laplace operator,  whereas otherwise the 
coupling is equivalent to a sparse 2h differencing and is 
non-elliptic, with h = Ax  = Ay for convenience in notation, 
although in general it is not necessary that A x  = Ay. The R 
terms will combine in the Poisson pressure correction equa- 
tion to form the difference between a sparse and a compact  
discretisation of the Laplacian of P. These operators could 
be included directly into the continuity equation, as noted 
below; however, expressing them in the form shown here 
simplifies the inclusion of boundary conditions for finite 
volume schemes, in which boundary conditions are applied 
by including an additional point outside the domain. The 
gradient of the pressure correction is set to zero at the 
boundary,  while the pressure at the exterior point is 
obtained by a second-order extrapolation from the interior. 

3. ANALYSIS 

The discrete h-ellipticity measure, Eh, of a discrete 
operator  L, is defined as l- 1 ] 

~ n  ~ (0 ' )  /5(0) , 
Eh = p7~ ~< IOl, IO'1 ~< ~ c(0-:--) L - ~  (9) 

where 0 is the wave number, £ is the symbol of L, 0 < p < 1, 
and (~ is the symbol of the compact  five-point Laplace 
operator,  V~ below. This measure, which is a variation of 
the measure suggested by Brandt and Dinar [12], nor- 
malises the difference in amplitude of £ at different wave 
numbers by that of the standard five-point compact  
Laplacian, which then has an E h of 1, and for good ellip- 
ticity it is required that Eh not be small, compared to 1. 
A non-elliptic operator will have E h = 0. 

The method considered in the present paper may best be 
analysed by writing the steady-state Navier-Stokes equa- 
tions in operator form as 

L(u)  + Dpx(p)  = O, 

L(v)  + Dpy(p)  = O, 

Dvx(u)  + Dry(v) + L ~(V](p) --V2b(p)) = O. 
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The above system has been written in a form in which the 
pressure gradients and divergence operators appear 
explicitly as the D operators. It is convenient to use different 
notations for these operators to allow a clearer exposition of 
the analysis. The V] and Vb z terms included in the continuity 
equation represent the elliptic correction terms given in 
Eqs. (7) and (8) in Section 2 above. It is clear that the above 
system in the continuous form is identical to the governing 
equations; however, if different discretisations are used for 
t he . ,  and .b Laplace operators then the system will not be 
identical in discrete form [ ! ]. 

All D terms are discretised using central differences, while 
a sparse 2h differencing is used for Va z and a compact h 
differencing, for V~. That is, 

VZ(p) = (2h)-2 ((pi+ 2 + p , -  2)j + (p j+ 2 + pj  2)i _ 4p"Q, 

V 2 ( p ) = h  2 ( ( p i + l . k _ p i - 1 ) / q _ ( p j + l . k _ p / - , ) i 4 p i ,  j). 

When the form of the Navier-Stokes equations given 
above is transformed into wave number space it is 
represented by the following matrix system, 

F2 o £ Dpy / ~=0,  (10) 
~ - 1  ~ 2  ^ 2  [_Dvx Dry L (V~(p)-Vb(p))A 

where A represents the Fourier transform of the discrete 
operator and a linearised form of the non-linear operator L 
is being considered. The symbol of the numerical method is 
then the determinant of the symbolic matrix given above, 
and ellipticity requires that the symbol is non-zero for all 
realisable high wave-number components. The determinant 
of the symbolic matrix is 

Det £(~2 ^2 . . . .  = - V b - D v y D p y - D v x D p x  ). 

By retaining the Dry, Dpy, Dvx, Dpx operators, which 

Va, it is possible to combine to give Dvy Dpy + Dvx Dpx = * 2 
see that the pressure/continuity interaction results in a 
Laplace operator and that 

Det = - £~762. 

Assuming that L is differenced in such a way so as not to 
effect the ellipticity of the system, the ellipticity of this 
scheme is determined by the pressure-continuity coupling 
which has the symbol Vb 2. As a compact h discretisation has 
been chosen for V~ the ellipticity of this system is identical 
to that of a compact h discretisation of the Laplace operator 
and is, therefore, strongly elliptic with Eh = 1. It should be 
noted that in the method described in Section 2 the inverse 
of L is not actually used. Rather, the standard SIMPLE 

approximation to the inverse is used, that is, the inverse of 
the matrix of diagonal terms. As with the SIMPLE scheme 
itself the use of an iterative approach with this approxima- 
tion results in the fully inverted matrix being obtained 
implicitly. 

The method presented above is easily modified to change 
the degree of ellipticity by including a multiplying factor M 
with the additional terms in the continuity equation as 

L(u) + Dpx(p) = O, 

L(v)+ Dpy(p)=O, 

Dvx(u) + Dry(v) + ML-l (VZ(p)  - -  V 2 ( p ) )  = 0. 

(11) 

The determinant of the matrix of the system including the 
multiplier is then 

A A A A 

Det = £(M(~7] -~ZbZ ) -- Dry Dpy -- Dvx Dpx), 

which may be written as 

Det = - £(M(TbZ + (1 -- M) ~7~). 

The discrete ellipticity measure of the modified scheme, as 
defined in Armfield [1],  is then Eh= 2M/(M+ 1). In prac- 
tise the inclusion of the multiplying factor is accomplished 
by multiplying the R terms in Eqs. (7) and (8) above by M. 

3.1. Truncation Error 

The inclusion of the elliptic correction terms will add an 
additional truncation error to the discrete continuity equa- 
tion, reducing the degree to which it approximates the con- 
tinuous equation. This additional error may be analysed in 
the following way. When the terms V2a and Vb z are expanded 
and combined we obtain in the x direction 

pi  + 2 2p i  + p i -  2 p i  + 1 2 p i  + p i  1 

4 A x  2 A x  2 

Ax2ipi+Z 4pi+~+6pi 4 p i - l + p i  2] 
4 Ax 4 ' 

which is a second-order discretisation for Ax2P ....... and 
similarly for the y direction. The correction is then seen to 
be equal to L-1  multiplied by a central finite volume dis- 
cretisation of the fourth-order derivatives of pressure, 

1 I-(Jx) 2 (AY) 2 ] 
P c o r =  L -  L-"'-4--- P ....... + T PYYYY " (12) 

As the magnitude of the term L ~ in discrete form will be 
dominated by the time difference term I/At for small enough 
At, the overall order of the additional truncation error 
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associated with the elliptic correction terms is expected in 
the limit to behave as h 2 At. The leading order truncation 
term in the second-order finite volume discretisation of the 
unmodified continuity equation is of order h 2 and, there- 
fore, it is expected that the additional error associated with 
the elliptic correction terms will not significantly increase 
the truncation error of the discrete continuity equation. This 
is examined in detail in Section 4. 

3.2. Conservation Error 

In finite volume schemes of the type used here the 
momentum equations and any additional transport equa- 
tions are converted to a conservation form before being 
discretised. Thus, for instance, the U momentum equation, 

method is used here whereby the conservation equations 
are constructed using the modified continuity equation 
including the elliptic correction terms. When this is done an 
additional source term of the form UPco  r is obtained that 
must be included explicitly into the u-momentum equation, 
and similarly for the other transport  equations that are 
being solved, cancelling out the implicit false source given 
above. In practise to obtain Pcor it is not necessary to 
evaluate the fourth derivatives of pressure; rather the 
difference between the modified and unmodified divergence 
is used. The influence of this term on the solution is 
considered in detail in the next section. 

4. RESULTS 

1 

U, + UUx + VU> = - P x  + ~e (Uxx + U>,>.), 

is converted to 

1 
U,+ (UU)x+ (VU),. = - p , + m  ( U , , +  V,,,,), 

• " Re . . . .  

by expressing the advection term as 

UUx+ VU>.+ U(Ux+ Vy), 

to obtain 

( g u ) x  + ( vu)>,, 

the conservation form of the U-momentum advection terms. 
Although in continuous form the divergence Ux + Vv = 0, 
allowing the above construction, in discrete form this con- 
straint is not exactly satisfied, and thus a false source of the 
form U Div(U, V) is included in the equation. As the 
residual of the divergence is the commonly specified con- 
vergence criterion for schemes of this type, Div(U, V) is 
small, and thus the effect of the false source is also small. 
However, when the elliptic correction terms are included in 
the continuity equation it is the residual of the modified 
equation that is driven to the convergence criterion [3],  
and as a result an additional false source is implicitly 
included in the momentum equation of the form, - UPcor. 
This effect may be significant particularly in problems with 
very long integration times. 

The false source term described above may be removed 
by constructing the conservation equations in a consistent 
manner, which may be accomplished in two ways. The 
(U, V) velocities may be stored and used directly in the 
advection terms; then as Div(U, V) is driven to convergence 
the false source term will be small. Such an approach is 
similar to that used by Rhies and Chow [5].  An alternative 

Results have been obtained for the transient behaviour of 
natural convection flow in a square cavity subjected 
impulsively to a horizontal temperature gradient at a 
Rayleigh number of 6 x 10 8. The Rayleigh number is defined 
as Ra=gflH3(AT)/v~:, with g the acceleration due to 
gravity, fl the coefficient of thermal expansion, H the height 
of the cavity, AT the total temperature variation in the 
cavity, v the kinematic viscosity, and ~ the thermal 
diffusivity. 

The top and bottom of the cavity are insulated and the 
side walls are set to +_ d 1"/2, with all boundaries non-slip. 
The fluid, which is assumed to be water with Prandtl num- 
ber Pr = 7.5 and kinematic viscosity v = 1 x 10 6 m 2 s  - 1, is 
initially at rest and isothermal, the heating and cooling is 
then switched on instantaneously and the flow is traced as 
it evolves to steady state. A full description of the flow is 
given in Patterson and Armfield [13] and Armfield and 
Patterson [14] and the reader is referred to those papers for 
details which will not be given here. The results presented 
below were obtained with a convergence criterion at each 

FIG. I. Temperature contours for M= 1.0 (dashed line), M=0A 
(dotted line), and M = 0.0 (solid line). 
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time step of the integrated absolute residual of the modified 
continuity equation being less than 1 x 10 4. The code was 
run on a STAR 910VP [15]. 

The temperature contours obtained with M values of 1.0, 
0.1, and 0.0, after 500 time steps, are presented in Fig. 1. 
These results were obtained on a non-uniform 99 x 99 mesh 
with grid stretching used to place additional points in 
regions of high variation adjacent to the boundaries. The 
non-dimensional time step is At = 0.002 (0.29s), based on 
the cavity height of H = 0.24m and a charactersitic velocity 
0 =  1.67 x 10 3ms-1. The solution at 500 time steps has 
been chosen for the presentation of results as it allows a 
comparison between the non-zero M and the M = 0 . 0  
solutions. When the integration is continued past the 500th 
time step for M = 0 . 0  the solution ceases to converge at 
approximately 700 time steps due to the grid scale pressure 
oscillation discussed above. 

The hot wall is on the left and thermal intrusions 
travelling across the ceiling and floor are clearly visible. 
A variation with respect to M can be seen in the cold 
intrusion approximately one-third of the way across the 
cavity from the cold wall and at a corresponding location in 
the hot intrusion. The variation is more easily seen in 
Fig. 2a, which contains an expansion of the cold intrusion. 
This clearly shows that the variation is greatest between the 
M = 1.0 and the other two results, the M = 0.1 and M = 0.0 
solutions, which are almost identical. It should be noted 
that this variation occurs in a region of relatively small 
gradient, and as contours are shown the variation 
corresponds to only a small absolute difference in the 
temperature. Apparently the temperature field has 
developed more rapidly for the M = 1.0 solution than the for 
the M = 0.1 and the M = 0.0 results. 

Figure 2b contains an expansion of the same region for 
the M =  1.0 and M = 0 . 0  solutions, but with the M =  1.0 

FIG. 2. (a) Expanded temperature contours in the cold intrusion for 
M = 1.0 (dashed line), M = 0.1 (dotted line), and M = 0.0 (solid line). 

FIG. 2. (b) Expanded temperature contours in cold intrusion for 
M =  1.0 with the consistent derivation (solid line) and M = 0 . 0  (dashed 
line). 

solution now obtained using the consistently derived 
conservation form of the advection terms, as described in 
Section 3.2 above, thus removing the false source associated 
with the inconsistent derivation. The consistent derivation 
of the advection terms has had an effect on the discrepancy 
noted above, effectively removing most of the variation 
associated with the M = 1.0 result, and the two solutions are 
now in close agreement. 

Contours of the U and V velocity fields and the pressure 
P show no discernible variation with M; for brevity these 
results are not presented. 

To enable a more quantitative comparison of the solu- 
tions obtained for the different M values the normalised 
integral of the absolute difference of the M =  1.0, M = 0.1, 
and the consistently derived M = 1.0 solutions with respect 
to the M = 0 . 0  solution are presented in Table I. For 
instance, the error for the M = 1.0 pressure result is defined 
a s  

~D IPM=1--PM=ol 
J'D IPM=o[ 

All of the fields have an error ~ 2 %  for the M = I . 0  
solution, although as noted above only the temperature 
contours showed a discernible variation due to the low 
gradients of temperature in the intrusions. When the consis- 
tent M = 1.0 solution is considered it is seen that the error 
is reduced by approximately 65% for the pressure, the 
velocities and the temperature, compared to the standard 
M = 1.0 solution. Apparently this reduction is sufficient to 
remove most of the observed error in the temperature con- 
tours, as noted in Fig. 2b above. For the M = 0.1 solution 
the error is reduced by approximately 90 %, as is expected. 

Figure 3 contains results comparing the integral of the 
leading order truncation term for the second-order 
unmodified continuity equation with the integral of the 
elliptic correction terms, for a range of grid sizes. Thus the 
integral of the leading order truncation term is 

AY2 , (13) 

TABLE I 

Integral of the Variation of the M = 1.0, M =  0.1, and Consistent 
M = 1.0 Solutions with Respect to the M = 0.0 Solution 

Field M= 1.0 M=0.1 M= 1.0 (consistent) 

Pressure 0.012 0.0012 0.0039 
u-velocity 0.019 0.0020 0.0080 
v-velocity 0.018 0.0019 0.0072 

Temperature 0.022 0.0022 0.0085 
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FIG. 3. Error plotted against grid size for the integral of the leading 
order truncation term of the unmodified continuity equation ( [] ) and the 
integral of the elliptic correction terms (O) with least squares power law 
fit. 

while the integral of the elliptic correction terms is obtained 
a s  

~D IOiv(U, V ) - D i v ( U ,  V)[, (14) 

where Div(U, V) is the discrete divergence obtained by a 
second-order finite volume differencing and Div( U, V) is the 
discrete divergence of the corrected velocities as given in 
Section 2.3 above. A least squares fit was used to determine 
the power dependence of the error in the form error -- h r. 
For the unmodified continuity truncation term r = 1.93 was 
obtained, while for the correction term r =  1.92 was 
obtained. Clearly both sets of results are exhibiting a 
quadratic behaviour with respect to the grid size, and it is 
observed that the magnitude of the unmodified truncation 
error is typically four times that of the elliptic correction 
terms over the range of grid sizes presented. It should be 
noted that for this flow a non-uniform grid is used and the 
grid-size for the comparison made above is an averaged 
value. The five grid sizes calculated correspond to 35 x 35, 
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FIG. 4. Integral of the elliptic correction terms plotted against time- 
step with least squares power law fit. 

3.000 1 05 

2.500 1 05 

-- 2.000 1 05 

1.500 1 05 J t r I t 

0 0 ,2  0 .4  0 .6  0 .8  1 

M 

F I G .  5. T o t a l  i t e r a t i o n  c o u n t  p l o t t e d  a g a i n s t  M.  

49 x 49, 71 x 71, 99 x 99, and 150 x 150 grids all obtained 
with a time-step of At = 0.002. 

The behaviour of the error associated with the elliptic 
correction terms with respect to the time-step is shown in 
Fig. 4, where the integral of the elliptic correction terms, as 
defined above, is plotted against the time-step for a range of 
time-steps, all on the 99 x 99 grid. Once again a least 
squares fit was used to determine the power dependence of 
the error in the form e r r o r = A  r with r=0 .898  being 
obtained. The elliptic correction error therefore displays an 
approximately linear variation with respect to the time step. 

Figure 5 contains iteration counts for a range of multi- 
plying factors and, hence, ellipticities of 0.0 ~< M ~< 1.0. The 
iteration count presented represents the total number of 
sweeps of the Poisson solver used to solve the temperature 
equation, the momentum equation and the pressure correc- 
tion equation for 500 time steps from initialisation on the 
99 x 99 grid with time step At  = 0.002. As can be seen the 
number  of iterations increases with decreasing ellipticity, 
with the M =  0.0 case requiring approximately twice the 
iterations of the M = 1.0 case. As noted above when the code 
is continued past the 500th time step the M = 0.0 case will 
cease to converge at approximately 700 time steps, as a 
result of the grid-scale oscillation in the pressure field. For  
all non-zero M values tested the code continues to run to 
steady state, which is reached after approximately 5000 time 
steps, with the variation in iteration count being 
approximately the same as that shown in Fig. 5. 

5. DISCUSSION AND CONCLUSIONS 

It has been shown both analytically and experimentally 
that the additional error introduced by the inclusion of the 
elliptic correction terms proposed by Armfield [ ! ] into the 
continuity equation is second order in space and first order 
in time, and thus the modified equations are still a consis- 
tent approximation of the continuous equations. Nonethe- 
less if the error associated with the elliptic correction terms 
is significant the need to reduce the grid size and/or time 



ELLIPTIC NAVIER-STOKES SOLVERS 183 

step significantly below that which would otherwise be used 
will lead to an inefficient scheme. An alternative to reducing 
the grid size is to reduce the magnitude of the elliptic correc- 
tion terms by including a multiplying factor set to less than 
1.0, as suggested by Sotiropoulos and Abdallah [10] who 
recommended M = 0.1. Although this will have the effect of 
reducing the error by an order of magnitude it will also 
reduce the degree of ellipticity of the scheme. 

The error associated with the introduction of the elliptic 
correction terms into the continuity equation consists of 
two components when a conservative finite volume scheme 
is used. One component is a direct result of the increase in 
the truncation error of the continuity equation, while the 
other is associated with the derivation of the conservation 
equations. When the conservation equation are constructed 
it is assumed that the divergence of the velocity will be zero. 
While this is never true in a numerical method, the discrete 
divergence is generally close to machine zero, as it is the 
commonly specified convergence criterion for schemes of 
this type. However, when the elliptic correction terms are 
included, although the modified discrete divergence will be 
close to machine zero, the unmodified discrete divergence 
will be considerably larger. This error is thus a result of the 
modified continuity equation being driven to convergence, 
while the unmodified continuity equation is used to con- 
struct the conservation equations. The conservation error is 
grid dependent and a further refinement of the grid will 
reduce its magnitude; however, it is easily removed entirely 
by constructing the conservation equations in a consistent 
manner, using the modified continuity equation, or by 
storing and using the (U, V) velocities directly in the 
advection terms. 

The error associated with the change in the truncation 
error of the continuity equation, cannot be removed from 
the scheme entirely, although it may be reduced in 
magnitude by including a multiplying factor as suggested by 
Sotiropoulos and Abdallah [3].  However as the leading 
order truncation term in the unmodified continuity equa- 
tion and the elliptic correction terms are both second order 
and, at least for the flow considered, the unmodified trunca- 
tion term is larger than the elliptic correction terms, it is 
likely that the direct influence on the solution of the elliptic 
correction terms will be small. This has been demonstrated 
by showing that the M = 1.0 solution has only ~ 2 % varia- 
tion when compared to the M = 0.0 solution. It should also 
be noted that the flow considered here is a relatively severe 
test of the effect of the inclusion of the elliptic correction 
terms, due to the considerable pressure gradients that are 
associated with the stratified intrusions. 

The magnitude of the elliptic correction terms is therefore 
a good measure of the overall accuracy of the scheme for the 
flow considered. If they are large then it is likely that the 
leading order truncation term of the unmodified continuity 
equation is also large and that a finer grid is required to 

obtain an accurate solution, with or without the inclusion of 
the correction terms. Although the error associated with the 
correction terms can be separately reduced by reducing M, 
it is suggested that this approach should only be taken when 
it has been ascertained that the unmodified equations do 
not require a further grid refinement. 

In addition to the effect of the error resulting from the 
introduction of the elliptic correction terms, this paper has 
also considered the effect of the degree of ellipticity on 
the rate of convergence of the scheme. From the results 
presented in the previous section it is clear that the degree 
of ellipticity of the discrete Navier-Stokes equations has a 
significant influence on the rate of convergence, with a 
reduction in ellipticity from Eh = 1.0 to E h = 0.18 ( M =  0.1 ) 
resulting in an increase of 20 % in the iteration count and 
consequently in computer time. In the method presented the 
reduction in ellipticity is associated with a reduction in the 
degree of the grid-scale smoothing, and thus the reduction 
in the rate of convergence is associated with the increased 
number of iterations required to smooth the grid-scale 
error. The reason that the rate of convergence does not have 
a one-to-one relationship with the grid-scale ellipticity is 
[presumably] because schemes of the type considered are 
proportionally more efficient at smoothing the high wave 
number error. If this were not the case then a reduction of 
a factor of two in ellipticity would result in an increase of a 
factor of two in cpu time. Multi-grid schemes, in which 
a proportionally smaller amount of time is spent on 
smoothing the grid-scale error, may result in a greater 
influence of the degree of ellipticity of the grid scale on the 
rate of convergence. 

It is also observed that, even when the magnitude of the 
elliptic terms is reduced by a factor of 10, no oscillation is 
seen in the pressure field. In fact, of the M values tested, only 
the M = 0.0, the non-elliptic case, showed an oscillation in 
the pressure, which after a sufficient number of time steps 
prevented convergence. It is therefore clear for this flow that 
even relatively weakly elliptic schemes will still retain 
enough ellipticity to prevent the pressure oscillation, in con- 
tradiction to the suggestion of Armfield [ 1 ]. However, the 
use of strongly elliptic schemes may still be recommended 
on the basis of more rapid convergence, while if a conser- 
vative finite volume scheme is used the conservation equa- 
tions should be constructed in a consistent fashion using the 
modified continuity equation, including the elliptic correc- 
tion terms. 
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